

Answer Key

Firing the Cannons on Constitution, using parabolic equations & vectors to describe the path of projectile motion

A cannonball is fired from the spar deck of USS Constitution at an initial velocity of 1,500 m/s. The cannon was inclined 15° and positioned 32 ft from the water.

1. Draw a quick sketch of the situation.

2. Calculate the vertical and horizontal components of the velocity vector.

$$v_{\gamma} = 1500 \sin 15 \approx 388 \ m/s$$

- $v_x = 1500 \cos 15 \approx 1449 \ m/s$
- **3.** Substitute the values into the equations $y(t) = \frac{-1}{2}gt^2 + v_yt + h_o$, the equation for vertical distance and $x(t) = v_xt$, the equation for horizontal distance.

$$y(t) = \frac{-1}{2} (32)t^{2} + 388t + 32 = -16t^{2} + 388t + 32$$
$$x(t) = 1449t$$

4. How high is a cannonball after 3 seconds? How far has it traveled?

height: $y(3) = -16(3)t^2 + 388(3) + 32 = 1052 ft$ distance: x(3) = 1449(3) = 4347 ft

5. What is the maximum height of the cannonball? How long does it take to reach this height? How far has it traveled in this time?

time to reach maximum: $t = \frac{-b}{2a} = \frac{-388}{2(-16)} = \frac{-388}{-32} = 12.25s$

maximum height: $h(12.125) = -16(12.125)^2 + 388(12.125) + 24 = -2352.25 + 4704.5 + 24 = 2376.25$

horizontal distance from boat: x(12.125) = 1449(12.125) = 17750.25 ft

6. Assume that the cannonball misses its target. When will the cannonball hit the water? How far has it traveled?

calculate the zeros:

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-388 \pm \sqrt{388^2 - 4(-16)(32)}}{2(-16)} \approx \frac{-388 \pm 391}{-32} \rightarrow t = 24.3$$

horizontal distance from boat: x(24.3) = 1449(24.3) = 35210.7 ft

7. Could the cannons hit a target 2 miles away? (1 mile = 5,280 feet) How long would it take for the cannonball to reach its target?

Based on the math, yes because the cannonball could roughly reach 6 miles. This could lead into a good discussion about reality of this situation.

- What forces may slow the cannonball down?
- How accurate is our information and the accuracy of the cannon?

It would take roughly 7.3 seconds to reach the target.