Answer Key

Firing the Cannons on Constitution, using parabolic equations \& vectors to describe the path of projectile motion A cannonball is fired from the spar deck of USS Constitution at an initial velocity of $1,500 \mathrm{~m} / \mathrm{s}$. The cannon was inclined 15° and positioned 32 ft from the water.

1. Draw a quick sketch of the situation.

2. Calculate the vertical and horizontal components of the velocity vector.

$$
\begin{aligned}
& v_{y}=1500 \sin 15 \approx 388 \mathrm{~m} / \mathrm{s} \\
& v_{x}=1500 \cos 15 \approx 1449 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3. Substitute the values into the equations $y(t)=\frac{-1}{2} g t^{2}+v_{y} t+h_{0}$, the equation for vertical distance and $x(t)=v_{x} t$, the equation for horizontal distance.

$$
\begin{aligned}
& y(t)=\frac{-1}{2}(32) t^{2}+388 t+32=-16 t^{2}+388 t+32 \\
& x(t)=1449 t
\end{aligned}
$$

4. How high is a cannonball after 3 seconds? How far has it traveled?
height: $y(3)=-16(3) t^{2}+388(3)+32=1052 \mathrm{ft}$ distance: $x(3)=1449(3)=4347 f t$
5. What is the maximum height of the cannonball? How long does it take to reach this height? How far has it traveled in this time?
time to reach maximum: $t=\frac{-b}{2 a}=\frac{-388}{2(-16)}=\frac{-388}{-32}=12.25 \mathrm{~s}$
maximum height: $h(12.125)=-16(12.125)^{2}+388(12.125)+24=-2352.25+4704.5+24=2376.25$
horizontal distance from boat: $\chi(12.125)=1449(12.125)=17750.25 \mathrm{ft}$
6. Assume that the cannonball misses its target. When will the cannonball hit the water? How far has it traveled?
calculate the zeros:
$t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-388 \pm \sqrt{388^{2}-4(-16)(32)}}{2(-16)} \approx \frac{-388 \pm 391}{-32} \rightarrow t=24.3$
horizontal distance from boat: $x(24.3)=1449(24.3)=35210.7 \mathrm{ft}$
7. Could the cannons hit a target 2 miles away? (1 mile $=5,280$ feet) How long would it take for the cannonball to reach its target?

Based on the math, yes because the cannonball could roughly reach 6 miles. This could lead into a good discussion about reality of this situation.

- What forces may slow the cannonball down?
- How accurate is our information and the accuracy of the cannon?

It would take roughly 7.3 seconds to reach the target.

