

A. Firing the Cannons on Constitution, using projectile motion to explore maximums and zeros

The graph below shows the vertical height of a cannonball fired from the Constitution with an initial vertical velocity of 388 ft/s and initial height of 24 ft.

Also, $h(t) = \frac{-1}{2}gt^2 + v_0t + h_0$, where h(t) represent the vertical distance determined by time, g represents the acceleration due to gravity, v_o represents the initial upward velocity and h_o represents the initial height. The acceleration due to gravity is roughly either 32 ft/s² or 9.8 m/s².

1. Identify the values, substitute them into the equation, and write an equation for the height. 3000 2700 2400 2100 FEET 1800 HEIGHT IN **2.** Which value of *q* did you use? Why? 1500 1200 900 600 300

> -4 -2

0 2

4

Vertical Height of a Cannonball

3. What is the maximum height of the cannonball?

4. How long does it take to reach the maximum height?

6 8 10 12 14 16 18 20 22 24 26 28

TIME IN SECONDS

5. How much time passes before the cannonball lands in the water?

6. How high off of the ground is the cannonball after 10 seconds?

7. When is the cannonball 1,500 ft off the ground?

